電気技術総合研究所における
薄膜・表面研究の現状

八百隆文
電気技術総合研究所
〒305 茨城県筑西市役所1-1-4
(1983年10月20日 受理)

Present Research Activities on Thin Films and Surface Science in Electrotechnical Laboratory
Takafumi YAO
Electrotechnical Laboratory 1-1-4, Umezono, Sakura-mura, Niihari-gun, Ibaraki 305
(Received October 20, 1983)

当研究所の沿革をさかのぼれば1876年工部省電信寮
に設置された電気研究所にまで遡る。1891年には通信省電信局に電気試験所が設立され,
その後幾多の組織の変革を経て,1952年には通産省工業技術院電気試験所となっ
た。1970年には名称を電気技術総合研究所と改め,1979年
に吹田研究開発都市に移転した。現在,職員数約720
名（うち研究者数約560名）で,13研究部（1つの研
究部当り3～5研究室）,1特別研究室,大阪支所（2
研究室）から構成されている。

研究分野は,物性・材料・デバイス関連の研究が中心
となるエレクトロニクス,ソフテュアーや電子計算機
関連の研究が中心となる情報技術,セルエネルギー開発や,
省エネルギー技術関連のエネルギー技術,電気・光・放
射線などの標準・計測技術の4つに大別される。薄膜・
表面研究はエレクトロニクス関連の研究として基礎部,
材料部,デバイス部,極限技術部,電波電子部などで進め
られている。電気技術における薄膜・表面研究の重要
性が,近年増に増大してきたが,それとともに当所に
おける薄膜・表面研究のテーマ数,研究者数も増してき
た。当所では薄膜・表面研究を電子材料開発の一環と
して位置づけている。フローチャート的に示すとFig.1
の如くとなる。従って薄膜関連の研究の目的は,①比
較的容易で在り現状のデバイス材料の開発,②新しい電子
材料の開発であり,表面関連の研究の目的は,材料開発
のためのcharacterizationと評価の開発である。以下,
当所における薄膜・表面研究のいくつかを紹介しよう。

1. 薄膜・表面研究

薄膜研究の対象は大部分半導体材料で,他は超電導材
料,磁性材料,有機分子材料である。半導体材料のKey
materialは言うまでもなくSiであるが,Si関連の薄膜
研究の一端に塗膜デバイス研究室で行われているSi分
子線エピタキシ（Molecular Beam Epitaxy-MBE）が
ある。Si MBEの課題は高精度の非結晶ドーピング技術
の開発であるが,すでにGa液状金属インジェクション用い
たドーピング技術を開発し,Gaの固相線温度までのドー
ピングに成功している。太陽光発電で注目を集めている
a-Si:H,は,当所で最も活発に研究を進めている薄膜材
料の一つである。アモルファス材料研究室では,種々の
ドーピング技術,スパッタ法やプラズマCVD法などによ
る薄膜条件を系統的に変化させて作製したa-Si:H膜を
電気・光学的・構造的的特性により総合的に評価し,
作製法から基礎性,応用に至る総合的な観点からの材
料研究を行っている。成膜法との関連では,発光分光分
析や非破壊分析分光法などによってプラズマ成膜法の
基礎プロセスの研究を行っている。なお,a-Si:H膜を
用いた太陽電池の研究は半導体デバイス研究室で行っ
ているが,同研究室では,Si基板上にLEDとSi基板
にmonoliticalに集積化する技術を開発する目的で,
Si基板上にGaP薄膜のMBE成長を行っている。monolitical
化では低温成長技術の開発がポイントとなるが,
基板温度350℃と極めて低温での成長が可能となって
いる。

GaAs系材料は,高速電子デバイスや半導体レーザー
の作製に用いられるため数多くの研究室でMBEを用
いた研究開発が進められている。固体物理性研究室では
薄膜制御性が良好というMBEの特長を生かして半導体
レーザーなど,二次元電子ガスデバイスを作製し,単原子
層超格子の研究を目的とするGaAs/AlAs複原子層超
格子などを作製している。また,GaAsやAlGaAs
の量子井戸レーザー活性層とした量子井戸レーザー
や,GaAs/AlGaAsヘテロ接合界面に形成される2次元
高電荷密度量子電子ガスを用いた量子ホール素子なども作
製している。固体物理性研究室では,FET, GaAs集
積回路,スーパーチャージドオーダーや新しい触媒
素子の開発を目的として,GaAs,GaAs/AlGaAs

![Fig. 1](image-url)
ヘテロ複合, GaAs/AlGaAs 赤格子を MBE 法により作製している。オプトエレクトロニクス研究室では, GaAs, AlGaAs へのインオン注入 MBE 技術を開発してい る。MBE 成長しながらインオン注入を行うことによっ て MBE 法ではドーピング困難な不純物のドーピングを行ったり、固溶体効果以上の高密度ドーピングを行おうというものである。

GaAs, AlGaAs 以外の III-V 族化合物半導体では、 固体物理研究室で、発光を基板材料の開発を目的として Ga-PCh-NH3 を原料として、N2 塩素気や中化学蒸着法 (Chemical vapor deposition-CVD) により GaNP 単結晶膜を AlAs 単結晶基板上にエピタキシャル成長している。高温電子材料研究室では、ガラス材料開発の一環として、AIN, GaN や AlGaN を、NH3 を N 源として用いた合成 MBE (Reactive MBE-RMBE) 法により AlN, AlAs 単結晶基板上にエピタキシャル成長している。また他の固体材料として SiC を C* イオン線と Si 線を用いたイオンエピタキシー法や、C 原として C2H2 を用いた RMBE 法や、SiH4 と C2H2 を用いた CVD 法などによる SiC 残、C* イオン線を用いたイオン堆積法によるダイヤモンド状の C 膜 BaF2 と PH3 を用いた CVD 法による BP 膜も作製している。なお、SiC に関することは、ガラス電子材料の作製を目的として、半導体デバイス研究室でも C2H2 や PH3 を C 原とする RMBE 法により作製している。

III-V 族化合物は Si→III-V 族化合物の延長上にあるポスト III-V 族化合物材料としての半導体性能材料の期待がある。固有物性研究室では、MBE の持つ非熱平衡状態の低温成長という特色を利用して、青色発光量子材料を開発する目的で ZnSe や ZnS などの III-V 族化合物半導体の MBE 成長を行っている。MBE 法の電気的特性やフォトウミネッセンス (Photoluminescence-PL) 特性を調えた結果 MBE 法により高品質の膜が成長できることが分かった。

NbsGe のような高 Tc の超電導材料薄膜の作製が、高温電子材料研究室で行われている。成長は、NbsGe をターゲットに用いた物理スパッタ法で、光電子分光によく解析によって A15 型の NbsGe の薄膜が確かめられ るっている。

磁性薄膜の研究は、磁性材料研究室で行われている。稀 土類系などの合金・化合物および稀土類がーネット系 などの磁性酸化物を磁性、スパッタや液相エピタキシー 法などの薄膜作製技術を用いて作製し、その磁化の解析的、光学的性質を研究している。

有機分子薄膜の研究は、一部基礎研究室と材料物理研究室で行われている。作製法は、気水界面に有機分子の 半導体層を形成し、それを半導体基板上に重ねる作製法と蒸着法がある。前者の方法で作製される薄膜膜 はラングミュア膜と呼ばれ、半導体層の尺度で構造を制御できる。最近、分子エレクトロニクスとの関連で有機 分子薄膜が注目されてきているが、ここでは電子物性や 光学特性に関する研究を進めていている。

2. 表面研究

当所における表面研究では、電子材料の評価あるいは表面評価法の開発に重点が置かれている。

光電子分光法の研究に関しては、XPS による半導体材 料や高分子化合物の評価や半導体表面の評価、600 MeV の SOR 光を用いた角度分解型 UPS による表面分析が、

高温電子材料研究室で進められている。

宇宙環境技術研究室では、金属材料や半導体材料の表 面 enorme の分散技術を開発する目的で、オージュ電子分光 法、XMA 法、光電子分光法などの諸方法を開発してい る。最近では、スパッタ放出物質の組成評価法の研究を 進めている。

破壊も低温下での研究である。微細加工、マスクレジイオン注入、表面改変のイオン源として最近重要性が認識され つつある。ビーム応用研究室では、MBE への応用や微 細エッチングが可能なイオン源として Ga イオン源の研 究を行なっている。