FOCUS on e-JSSNT_

operated by The Surface Science Society of Japan with Japan Science and Technology Agency

ホームページ: http://www.sssj.org/ejssnt 電子メール: ejssnt@sssj.org J-Stage アーカイブ: http://ejssnt.jstage.jst.go.jp

鉄シリサイドの形成過程

In situ differential reflectance spectroscopy study of early stages of β-FeSi₂ silicide formation (Conference –JRSSS-6-) http://dx.doi.org/10.1380/ejssnt.2005.113, *S. A. Dotsenko, N. G. Galkin, and A. S. Gouralnik, Vol. 3, pp. 113-119 (8 April, 2005)*

シリコン基板上に金属を蒸着することで容易に高品 質のシリサイドを形成することができる。半導体的 なシリサイドはトランジスタ作用を示し、金属的な シリサイドはトランジスタへのコンタクト電極を形 成するのに用いられ、シリコンテクノロジーにおい て極めて重要な物質群である。鉄シリサイドにはα-、 β-、γ-FeSi₂、および FeSi 相が存在する。このうち β相は バンドギャップ 0.87 eV の半導体であり、光 ファイバーの透過窓とマッチングするため、光通信 での検出器や発光素子として使える。他の相は金属 的なシリサイドであり、ショットキーコンタクトの 形成に利用できる。よって、さまざまな鉄シリサイ ド相を作り分けることは極めて重要な技術となる。 本研究では、400~700℃の Si(111)基板表面上に鉄を 蒸着していくと、FeSi 相からβ-FeSi2に相変態する ことを観察した。この鉄シリサイド形成の初期過程 を反射率差分光法と原子間力顕微鏡を用いて調べた。 その結果、蒸着 Fe 膜厚が 0.2 nm 以下の場合、FeSi

らかと なった。

ナノサイズ銀微粒子の光学特性

The Change of the Surface Morphology and Optical Properties During the Heat-Treatment for Silver Films Deposited on Silicas (Regular Paper) http://dx.doi.org/10.1380/ejssnt.2005.120, *N. Hashimoto, Y. Yamamoto, and S. Niijima, Vol. 3, pp. 120-124 (12 April, 2005)*

非線形光学物質はさまざまな光学素子に利用されてい る。貴金属微粒子を分散させたガラスは特に有用で、 可視光領域での吸収特性(局所表面プラズモン共鳴に よる)やピコ秒領域の高速非線形光学応答など有用な 特性を持つ。金属微粒子を分散させたガラスは溶融急 冷法やイオン注入法、ゾル・ゲル法、またはスパッタ リング法などによって作製されている。本研究では、 高純度を維持でき、しかも安価な蒸発凝集法を用いて 銀ナノ微粒子膜をシリカ基板上に作製した。窒素ガス をフローさせながら銀を蒸発させて基板上に凝集させ た。その後、100~500℃の範囲でアニールして、その 形状と光学吸収スペクトル、および非線形光学特性の 変化を測定した。200℃でアニールすると、高密度で充 填されていた銀微粒子が合体して島構造となり、それ に伴い吸収スペクトルのピークが短波長側にシフトし た。非線形屈折率γは負の値を示し、その絶対値はア ニール温度とともに減少することが明らかとなった。

多様なタリウム原子の吸着サイト Growth of thallium overlayers on Si(100) surface: Ab initio molecular dynamics study (Conference –JRSSS-6-) http://dx.doi.org/10.1380/ejssnt.2005.125, I. A. Kuyanov and A. A. Alekseev, Vol. 3, pp. 125-130 (19 April, 2005)

タリウム (Tl) 原子は III 族原子にもかかわらず、3 価として振る舞うだけでなく時として1 価状態にも

なり、興味深い現象をしめす。シリコン結晶表面上 の Tl 原子の吸着現象は 90 年代から研究されており、 お互いに食い違うさまざまな見解が報告されてきた。 Si(111)-1×1-Tl 表面では T₁ 吸着サイトが理論的に 予想されたが、最近の第1原理計算によってT4サイ トが最安定であることがわかってきた。本研究では、 最近 STM 観察の行われた Si(100) 表面上の TI 吸着 表面構造を密度汎関数近似による第1原理全エネル ギー計算法によって調べた。TI の被覆量が 0.25 ML. 0.5 ML, 0.75 ML, および 1.0 ML のときに、それぞ れα-、β-、 γ -2×2-Tl 相および 2×1-Tl 相が形成 される。計算の結果、それぞれの相で Tl 原子は、 valley-bridge サイト(α 相)、valley-bridge サイトでの 平行ダイマー構造(β相)、および valley-bridge サイト と pedestal サイト(y相と 2×1 相) に吸着している ことが明らかとなった。これらの原子配列モデルか ら計算された STM 像は実験結果と良く一致した。各 相での Tl 原子の電子状態に興味が持たれる。

シリコン球状ナノ結晶の鎖

Chains of crystalline-Si nanospheres: growth and properties (Review Paper) http://dx.doi.org/10.1380/ejssnt.2005.131, *H. Kohno and S. Takeda, Vol. 3, pp. 131-140 (19 April, 2005)*

リソグラフィ技術に依らずに、自己組織化現象によって形成されるナノワイヤ構造が最近脚光を浴びている。しかも 1990 年代以降、ワイヤの径を nm レベルにすることが可能となり、その形成機構や光学的・電気的特性の研究が盛んに行われている。実際、量子閉じ込め効果・表面効果による異常ルミネッセンス、レーザー発振、弾道伝導や伝導度の量子化、あるいは生物的・化学的物質によって敏感に電気伝導度が変化する現象、巨大熱電効果などが次々と報告されている。本レビュー論文では、著者らによって発見されたシリコンナノ鎖(球状の Si ナノ微結晶が Si 酸化物によって数珠玉状につながったワイヤ)

について、その形成機構やさまざまな物性をまとめ て報告している。この鎖の成長は基本的に蒸気・液 体・固体 (VLS) 機構によるが、成長中にナノワイヤ の径が周期的に変動しながら酸化されることにより、 Si 結晶ワイヤが分断されて Si ナノ微結晶が Si 酸化 物によってつながった構造となる。ラマン散乱によ って Si ナノ微結晶中では圧縮応力がかかっているこ とやフォノン閉じ込め効果が明らかになり、さらに は可視光領域でのフォトルミネッセンスも観察され た。これは Si 酸化物領域での励起子再結合による。 また、電気伝導測定では電流・電圧特性曲線にクー ロン階段が見られ、微粒子が絶縁体でつながった構 造から期待される特性と一致した。

溶液中の電極表面上で微粒子を動かす

Potential-Driven Dynamic Behavior of Surface Modified Gold Nanoparticles at a Au(111) Electrode Surface (Conference -Nano-org & Func.-) http://dx.doi.org/10.1380/ejssnt.2005.141, *T. Sagara and M. Kokubu, Vol. 3, pp. 141-144 (28 April, 2005)*

界面活性剤が電極表面上でダイナミックに分子集合 構造を変化させることが最近の研究から明らかにな っている。電極の電位によって、可逆的な構造の変 化や微小物体の移動などが可能になればさまざまな 応用が開ける。以前、著者らは、有機単分子層でく るまれた Au 微粒子が溶液中の電極表面上で、電極 電位に依存して構造変化することを見出している。 そこでは、電位を変化することによって Au 微粒子 に吸着した誘起分子の配向の変化が誘起されるが、 微粒子自体の吸着・脱離を引き起こすものではなか った。本研究では、さらに小さな Au 微粒子と短い 側鎖を持つ表面修飾分子を用いて実験した。その結 果、電極電位の変化に誘起されて、微粒子の表面に ついた分子側鎖の配向変化とともに、微粒子自体の 吸着・脱離も引

はしていた。 きしていた。 これした。 これられた。 これした。 これた。 これたた。 これた。 これた。 これた。 これた。 これた。 こ

安定で表示のを持 っている。このよ うに、電極表面上 で、表面を修飾し た金属微粒子の構 造や挙動を制御す ることが可能とな った。

