第1章 表面分析技術者のための超高真空技術基礎

シエンタオミクロン株式会社 大岩 烈 Oiwa.Retsu@ScientaOmicron.com

- 1. はじめに
- 2. 表面分析と超高真空技術
 - 2-1 得られたデータを正しく解釈をする前に、正しく測定する必要がある。
 - 2-1-1 試料の取り扱い
 - 2-1-2 試料の前洗浄の必要性
 - 2-1-3 試料取り付けに使用する道具、冶具
 - 2-1-4 試料の大きさと試料台への取り付け方法
 - 2-1-5 真空中におかれた試料の安定性
 - 2-1-6 必要とする真空度
 - 2-1-7 測定中に考慮すべき物理現象

2-2 超高真空技術

- 2-2-1 超高真空排気系
- 2-2-2 なぜ、表面・界面分析に超高真空が必要か?
- 2-2-3 気体の平均自由行程
- 2-2-4 試料表面に衝突する残留気体分子の数
- 2-2-5 超高真空を作る
- 2-2-6 サンプルハンドリング系

第2章 真空技術基礎

表面分析技術者のための真空技術基礎

The basic of vacuum technology for surface analysis engineers

目次

- 1. はじめに
- 2. 真空のはたらき
- 3. 真空の圧力単位系と区分
- 4. 真空の性質(物理学的なとらえ方)
 - 4-1 気体分子運動論
 - 4-1-1 気体の状態方程式
 - 4-1-2 圧力
 - 4-1-3 気体分子の速度分布
 - 4-1-4 平均自由行程
 - 4-1-5 入射頻度
- 5. 真空中で起こる物理現象
 - 5-1 水の蒸発・氷の昇華
 - 5-2 真空中の金属の蒸発
 - 5-3 真空中での熱の伝わり方
 - 5-4 吸着と脱離

- 6. 真空を作る
 - 6-1 到達圧力とは
 - 6-2 排気とガス放出
 - 6-3 流量とコンダクタンス
 - 6-4 超高真空技術

6-4-1 材料

6-4-2 加工

6-4-3 洗浄

6-4-4 溶接

6-4-5 超高真空ポンプ

7. 真空を測る

7-1 全圧計

7-2 分圧計

- 8. 漏れ探し
- 9. まとめ
- 10. 参考文献

		低真空	高真空	超高真空
	大気圧	$10^2 \mathrm{Pa}$	10 ⁻³ Pa	10 ⁻⁷ Pa
気体の数	10^{19}	10^{16}	10^{11}	10^{7}
: 個/cm³				
気体の速度(室				
温)	_	_	500	500
: m/s				
平均自由行程	0. 1µm	0.1mm	1 m	10km
表面第一層が気			1秒	104秒
体分子で覆われ	<u> </u>	_		(およそ3
るまでの時間				時間)

表 それぞれの真空度におけるおおよそのイメージ